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SUMMARY
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Map-
ping the interactome has therefore been a central objective of high-throughput biology. However, the dy-
namics of protein interactions across physiological contexts remain poorly understood. Here, we develop
a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of
mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a pro-
teome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique
interactions at a quality comparable to the highest-quality human screens. We identify systematic suppres-
sion of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific
modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in dis-
ease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome re-
sponses to physiological and pathophysiological stimuli in mammalian systems.
INTRODUCTION

Cellular functions aremediated by the dynamic association of in-

dividual proteins into complexes, signaling pathways, and other

macromolecular assemblies. The biological functions of many

proteins depend on specific physical interactions with other pro-

teins, and disruption of these interactions can result in disease

(Sahni et al., 2015; Wang et al., 2012). Defining the complete

map of functional protein-protein interactions in a given organ-

ism (the interactome) has therefore been a long-standing goal

of the post-genomic era, with a view to better understanding pro-

tein function, cellular processes, and ultimately the relationship

between genotype and phenotype (Vidal et al., 2011). To this

end, high-throughput methods have been developed to map in-

teractomes at the proteome scale, including yeast two-hybrid

(Y2H), affinity purification-mass spectrometry (AP-MS), protein

complementation assay (PCA), and protein correlation profiling

(PCP). These methods have been applied successfully to

generate high-quality maps of the interactomes of humans

(Hein et al., 2015; Huttlin et al., 2015, 2017; Luck et al., 2020;

Rolland et al., 2014) and other metazoans (Guruharsha et al.,

2011; Simonis et al., 2009).

Widely used methods for mammalian interactome mapping

rely on heterologous expression or genetically manipulated cell

lines, and, as a consequence, existing interactomemaps provide
limited insight into which interactions occur in specific cell types

or tissues, or under pathophysiologically relevant conditions

(Snider et al., 2015). Targeted interactome mapping in tissue-

or cell-type-specific contexts has revealed rewiring of protein

interactions in select human diseases (Pankow et al., 2015;

Shirasaki et al., 2012), yet fundamental questions regarding the

organization of the interactome across mammalian tissues

remain unanswered. Whereas large-scale efforts to profile the

transcriptome, proteome, and epigenome of human tissues

have been undertaken (Melé et al., 2015; Kundaje et al., 2015;

Uhlén et al., 2015), a comparable resource at the interactome

level is lacking.

We previously developed a high-throughput method for inter-

actome mapping by combining size exclusion chromatography

(SEC) with protein correlation profiling-stable isotope labeling

by amino acids in cell culture (PCP-SILAC) (Kristensen et al.,

2012). Here, we couple PCPwith stable isotope labeling of mam-

mals (SILAM) (Krüger et al., 2008; McClatchy et al., 2007) to map

the interactomes of sevenmouse tissues. This resource provides

a global view of protein-protein interactions in a mammalian tis-

sue-specific context. Our study additionally provides a system-

atic interactome map in mouse that more than doubles the size

of the known mouse interactome. The resulting in vivo interac-

tome maps uncover widespread rewiring of protein interactions

across physiological contexts.
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Figure 1. Quantitative interactome profiles of seven mouse tissues with PCP-SILAM

(A) PCP-SILAM workflow for interactome mapping in mouse tissues.

(B) Global visualization of protein elution profiles across 770 SEC fractions spanning seven mouse tissues. Elution profiles are arranged separately within each

replicate by the fraction of maximum abundance.

(C) Enlarged elution profiles of representative protein complexes (top, eIF3 complex; middle, COP9 signalosome; bottom, prefoldin complex).

(D) Hierarchical clustering of PCP-SILAM replicates.

(E) Reproducibility of PCP-SILAM protein quantification.

(F) Rank correlations between biological replicates in PCP-SILAM and in published PCP-SILAC data. Horizontal lines show the mean correlation. Box plots show

the median (horizontal line), interquartile range (hinges), and smallest and largest values no more than 1.5 times the interquartile range (whiskers) throughout.

(G) Recovery of known protein complexes by patterns of co-abundance in PCP-SILAM data, as compared to large-scale proteomics, transcriptomics, and

ribosome profiling datasets. Horizontal line shows the mean AUC.

(H) Recovery of known protein complexes in PCP-SILAM and published PCP-SILAC data.

See also Figure S1.
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RESULTS

Quantitative in vivo interactome profiling of mouse
tissues
We profiled the interactome of seven mouse tissues, including

brain, heart, skeletal muscle (gastrocnemius), lung, kidney,

liver, and thymus, using PCP-SILAM (Figure 1A). The in vivo in-

teractome of each tissue was preserved by extracting and

separating protein complexes under non-denaturing conditions

and in the presence of excess protease and phosphorylase in-

hibitors. A total of 55 SEC fractions were collected from each

tissue, in biological duplicate, from both 13C6-labeled (heavy)

and unlabeled (light) mice. The heavy fractions were then

pooled to generate a global reference mixture, which was
2 Cell 184, 1–17, July 22, 2021
spiked into all 770 light fractions. Each fraction was then sub-

jected to liquid chromatography-tandem mass spectrometry

(LC-MS/MS) analysis.

A total of 7,225 unique proteins were detected across all frac-

tions (Figure 1B; Table S1). The set of identified proteins encom-

passed many well-known protein complexes, as exemplified by

the prefoldin complex, the COP9 signalosome, or the eIF3 com-

plex (Figure 1C). Notably, PCP-SILAM chromatograms differen-

tiated non-constitutive subunits, such as the loosely bound eIF3j

subunit, and complex isoforms, such as the eIF3b-eIF3g-eIF3i

submodule (Valá�sek et al., 2017). The use of a global reference

standard imposed an upper bound on the total number of pro-

teins that could be quantified by their SILAM ratios, as compared

to a label-free approach (Figure S1A). However, the technical
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precision of SILAM-based protein quantification was signifi-

cantly higher than that of quantifications based on the light chan-

nel only, as quantified either by the coefficient of variation be-

tween biological replicates for individual fractions, or the

correlation across entire chromatograms (both p < 10�15, Brun-

ner-Munzel test; Figures S1B and S1C). A small number of pro-

tein quantifications were marked by very high ratios relative to

the global reference, likely due to a combination of tissue-en-

riched protein abundance and sharp chromatographic peaks

(Figure S1D). However, SILAM continued to afford an increase

in quantitative precision even for these very high ratios, support-

ing the robustness of the technique (both p < 10�15; Figures S1E

and S1F). Reproducibility between biological replicates was

high, with samples clustering by tissue rather than by batch,

and no statistically significant batch effects were observed (Fig-

ures 1D and 1E; Figures S1G and S1H). Remarkably, the degree

of reproducibility we observed was quantitatively comparable

to that of cell-line-based PCP-SILAC, despite the greater

complexity of in vivo tissues (Figure 1F). Reproducibility was

somewhat lower for muscle, perhaps because the presence of

highly abundant proteins interfered with the identification or

quantification of more lowly abundant proteins (Geiger et al.,

2013) (Figure S1I).

As an initial assessment of the quality of our data, we

compared PCP-SILAM to large-scale proteomics, transcriptom-

ics, and ribosome profiling datasets for their ability to recover

known protein complexes (Romanov et al., 2019). Patterns of

co-abundance across SEC fractions consistently proved more

informative than those in large-scale transcriptome, translatome,

or proteome datasets (Figures 1G andS1J), with amean area un-

der the ROC curve (AUC) of 0.77, compared to 0.70 for 11 large-

scale proteomics studies (p = 0.016, t test), 0.62 for five RNA-seq

studies (p = 4.9 3 10�5), and 0.62 in a pair of ribosome profiling

studies (p = 2.0 3 10�8). Notably, the mean AUC in PCP-SILAM

data was higher than that achieved in a meta-analysis of 5,288

SILAC proteomics experiments from 294 different biological

conditions (Kustatscher et al., 2019) (Figure S1K). These findings

illustrate the primary advantage of PCP over large-scale prote-

ome ‘‘co-regulation’’ networks: namely, that separation over

the SEC column should specifically discriminate pairs of proteins

in the same protein complex from indirectly associated pairs,
Figure 2. Inference and validation of mouse tissue interactomes

(A) Schematic illustration of the computational procedure for interactome networ

(B) Number and tissue specificity of interactions detected in each mouse tissue.

(C–E) Comparison of mouse tissue interactomes to high-throughput screens o

complexes.

(C) Functional coherence of interactome networks. Each vertical band represent

could be predicted from network topology alone in each interactome. Vertical lin

random chance.

(D) Coexpression of interacting protein pairs in quantitative proteomics data from

1,000 randomly selected interacting protein pairs, shaded by the coexpression of

correlated interacting pairs.

(E) Co-localization of interacting protein pairs, as quantified by their correlation a

(F) PCP-SILAM profiles of talin and the TCP1 complex in the mouse brain and liv

(G) Relative abundance of co-immunoprecipitated TCP1 complex subunits to talin

replicates.

(H) PCP-SILAM chromatograms for Rpl3, Rpl3l, and the 60S ribosome (median a

(I) Relative abundance of Rpl3 and Rpl3l in purified ribosomes from the same fou

See also Figure S2.
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whose abundance fluctuates in a correlated manner due to

involvement in a common underlying biological process. No sig-

nificant difference in AUC was observed between PCP-SILAM

and cell-line-based PCP-SILAC (Figures 1H and S1L; p =

0.58), indicating that adaptation for in vivo interactome profiling

did not compromise data quality, despite the greater complexity

of entire tissues.

Inference of high-confidence mouse tissue
interactomes
Toderive interactomes fromPCP-SILAM tissueproteomeprofiles,

we developed PrInCE, a machine-learning pipeline for analysis of

co-fractionation mass spectrometry data (Figure 2A) (Stacey

et al., 2017). PrInCEbuilds on previous approaches to co-fraction-

ation data by training amachine-learning classifier to identify inter-

actingproteinpairs,basedon theelutionpatternsof knownprotein

complexes (Havugimana et al., 2012; Wan et al., 2015). However,

in contrast to previous approaches that learn jointly from co-frac-

tionation data and publicly available genomic datasets, PrInCE re-

covers PPIs using features derived exclusively from the mass

spectrometric data (Skinnider et al., 2018).

Applying PrInCE to PCP-SILAM data identified between

19,804 and 35,536 interactions in each tissue at a 5% false dis-

covery rate (FDR), for a total of 125,696 unique interactions (Fig-

ure 2B; Table S2). Conversely, 47.4% of intra-complex pairs

within the training set were not recovered (Figure S2A), suggest-

ing a false negative rate of roughly 50%, at least among intra-

complex interactions expected to be detectable by PCP. We

tested the robustness of the inferred interactomes by varying

the parameters used to perform network inference with PrInCE,

finding that the vast majority of interactions were robustly identi-

fied (Figure S2B; Table S3). We also evaluated the impact of high

SILAM ratios on the inferred networks. Proteins with a high SI-

LAM ratio tended to participate in slightly more tissue-specific

interactions, consistent with the notion that these ratios reflect

tissue-enriched protein abundance (Figure S2C). However, we

also identified high SILAM ratios within well-studied protein

complexes, and interactions involving a protein with a high SI-

LAM ratio were recovered at slightly higher precision thresholds

than the proteome average, suggesting that these ratios did not

hinder accurate network inference (Figures S2D and S2E).
k inference from PCP-SILAM data.

f the human interactome, literature-curated interactions, and known protein

s a single GO term, shaded by the AUC with which proteins with that GO term

es indicate the proportion of GO terms with AUC less than 0.5, equivalent to

41 cancer cell lines (Lapek et al., 2017). Each vertical band represents one of

the two interacting proteins. Vertical lines indicate the proportion of negatively

cross cellular fractions in subcellular proteomics data.

er.

inmouse brain and liver. Error bars show standard error across three biological

nd interquartile range, ribbon) in the mouse brain, heart, kidney, and liver.

r tissues. Error bars show standard error across four biological replicates.
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To evaluate the quality of the networks inferred from PCP-SI-

LAM data, we compared each mouse tissue interactome to five

recently published high-throughput human interactome screens

(Hein et al., 2015; Huttlin et al., 2015, 2017; Luck et al., 2020;

Rolland et al., 2014), conducted using AP-MS or Y2H, as well

as literature-curated interactions reported in one, two, three, or

four publications and well-studied protein complexes. We

computed three indices that reflect the concordance of each

network with other large-scale genomic datasets. First, we eval-

uated the functional coherence of the network, defined as the

degree to which the function of any given protein can be pre-

dicted from those of its interacting partners based on the princi-

ple of ‘‘guilt by association’’ (Ballouz et al., 2017; Oliver, 2000).

Second, we evaluated the tendency for interacting protein pairs

to display correlated patterns of abundance across two large

proteomic datasets (Kustatscher et al., 2019; Lapek et al.,

2017). Last, we evaluated the degree to which interacting pro-

teins localized to the same subcellular compartments in two sub-

cellular proteomics datasets (Geladaki et al., 2019; Orre et al.,

2019) (STAR Methods). All three indices yielded broadly concor-

dant pictures of network quality (Figures 2C, 2E, and S2F–S2H),

generally suggesting that interactions inferred by PCP-SILAM

were superior to Y2H, comparable or slightly inferior to AP-MS,

and intermediate between literature-curated interactions re-

ported in one and two publications. Thus, these findings suggest

the quality of PCP-SILAM networks is comparable both to recent

systematic human screens and to interactions identified by

small-scale, hypothesis-driven experiments.

To validate the tissue specificity of the interactions, we

compared the properties of the fitted Gaussians in tissues where

an interaction did or did not take place, as inferred by PrInCE.

Protein pairs eluted over significantly more distant fractions in

tissues where the interaction did not take place (p < 10�15, Brun-

ner-Munzel test; Figure S2I). Moreover, among protein pairs that

did co-elute within a window of two fractions, non-interacting

pairs had significantly more variable stoichiometries than inter-

acting protein pairs, suggestive of chance co-elution (p <

10�15; Figure S2J). These observations support the notion that

PrInCE was able to accurately distinguish tissues in which pro-

teins did or did not interact.

To experimentally validate the ability of PCP-SILAM tomap in-

teractions in mouse tissues, we focused on a putative interaction

between the cytoskeletal protein talin and the subunits of the

chaperonin-containing TCP1 complex, which had not previously

been reported in either mouse or human (Figure 2F). Immunopre-

cipitation of talin confirmed the interaction with TCP1 in mouse

brain (Figure 2G). To confirm the tissue specificity of the interac-

tion, we additionally performed immunoprecipitation in mouse

liver, where talin and TCP1 complex curves displayed limited

correlation, and observed limited co-purification, consistent

with PCP-SILAM (Figures 2F and 2G). Similarly, we examined

an apparent heart-specific paralog switch in the ribosome,

driven by the replacement of the constitutive Rpl3 by its paralog

Rpl3l (Figure 2H). Rpl3l is primarily expressed in heart and

skeletal muscle, and mutations of Rpl3l are implicated in atrial

fibrillation (Thorolfsdottir et al., 2018). However, it has remained

unclear whether Rpl3l is incorporated into ribosomes, or whether

its physiological effects are mediated by extra-ribosomal func-
tions (Chaillou et al., 2016). Isolation of purified ribosomes from

mouse tissues, followed by label-free quantitation, confirmed

the incorporation of Rpl3l into heart-specific ribosomes (Fig-

ure 2I). Thus, orthogonal biochemical techniques confirmed the

ability of PCP-SILAM to reveal dynamic rearrangements in the in-

teractome across tissues.

Unbiased expansion of the mouse interactome by
PCP-SILAM
The mouse is a ubiquitous model organism, yet its interactome

has never been the subject of a systematic, proteome-scale

mapping effort. To compare our networks to the known mouse

interactome, we assembled a total of 82,602 mouse PPIs that

were detected in small-scale experiments from nine interaction

databases. Strikingly, of the 125,696 unique interactions de-

tected here by PCP-SILAM, only 4,354 (2.1%) overlap with inter-

actions detected by small-scale experiments (Figure 3A). This

overlap is significantly larger than would be expected by chance

(p < 10�15, hypergeometric test) but small in magnitude. We

reasoned that this relatively small overlap could likely be ex-

plained by two factors: (1) the small size of the known mouse in-

teractome, and (2) the complementarity between PCP-SILAM

and the assays employed in small-scale studies. To test the

former possibility, we calculated the overlap between our net-

works and a larger resource of human small-scale interactions.

Despite the evolutionary divergence between human and

mouse, this overlap was comparable to that observed for recent

high-throughput screens of the human interactome, suggesting

that the relatively low overlap with the mouse interactome does

not reflect an enrichment for false-positives (Figure S3A). We ob-

tained similar results when calculating the overlap with human

genetic interactions, which are known to overlap with physical

protein-protein interactions (Collins et al., 2007) (Figure S3B).

Moreover, we found that among literature-curated PPIs, interac-

tions detected by PCP-SILAM intersectedmost significantly with

those detected by co-sedimentation, and less with PPIs de-

tected by two-hybrid or cross-linking approaches (Figure S3C),

supporting the notion that each assay recovers characteristic

subsets of the interactome. We additionally asked whether

PCP-SILAM exhibits detectable bias toward stable, high-affinity

PPIs but found that PCP-SILAM interactions cataloged in the

PDBbind database (Liu et al., 2015) spanned a broad range of

binding affinities (Figure S3D).

The remaining 121,342 unique interactions detected in this

study have not previously been reported in mouse; thus, our pro-

teome-scale resource therefore expands themouse interactome

by a factor of�2.5 (Figure 3B). To functionally characterize these

PPIs, we compared patterns of GO term co-annotation between

literature-curated and PCP-SILAM interactions (Figure 3C).

Relative to literature-curated interactions, mouse PPIs detected

by PCP-SILAM were enriched for connections involving meta-

bolism, translation, and protein folding. In contrast, PCP-SILAM

PPIs were underrepresented in connections involving cell-cell

signaling and proliferation. These findings are broadly consistent

with the expectation that PCP-SILAM would prioritize cytosolic

over nuclear or extracellular complexes.

We next asked whether PPIs detected by PCP-SILAM prefer-

entially expanded existing regions of the global mouse
Cell 184, 1–17, July 22, 2021 5
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Figure 3. Unbiased expansion of the literature-curated mouse interactome by PCP-SILAM

(A) Proportion of previously known mouse interactions observed in PCP-SILAM tissue interactomes.

(B) Size of the known mouse interactome before and after this study.

(C) Comparison of interacting protein co-annotation within and across biological processes between PCP-SILAM and LC interactions.

(D) Markov clustering of the global mouse interactome, and proportion of protein communities containing exclusively known interactions (‘‘known’’), exclusively

PCP-SILAM interactions (‘‘novel’’), or both (‘‘intermediate’’).

(E) Proportion of interactions involving proteins of unknown function, among interactions detected in one to seven tissues.

(F) Proportion of interactions involving interactome orphans, among interactions detected in one to seven tissues.

(E and F) Error bars show the standard error of the sample proportion.

(G) Number of interactions between proteins binned by number of publications, and ordered along both axes. Histogram shows the median number of publi-

cations in each bin.

See also Figure S3.
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interactome, or tended to form distinct subnetworks. To provide

a global view of network topology, we applied Markov clustering

(Enright et al., 2002) to group the entire mouse interactome,

including both literature-curated and PCP-SILAM interactions,

into 696 clusters (Figure 3D; Table S4). Of the 92 clusters con-

taining at least one PPI detected by PCP-SILAM, 50 (54%)

included both literature-curated and high-throughput PPIs, while

42 were composed exclusively of PCP-SILAM interactions.

Thus, while PCP-SILAM reveals several protein communities

that were altogether unknown in mouse, many interactions

also expand neighborhoods of themouse interactomewith foun-

dations previously defined by small-scale experiments.

Literature-curated protein interaction datasets have been crit-

icized on the grounds that they are biased toward a relatively
6 Cell 184, 1–17, July 22, 2021
small set of highly studied proteins. We organized the litera-

ture-curated mouse interactome by ranking proteins based on

the number of publications in which they have been mentioned,

as in a previous study of the human interactome (Rolland et al.,

2014), and found that the mouse literature-curated interaction

dataset is likewise dominated by interactions betweenwell-stud-

ied proteins (Figure 3G). High-throughput interactome mapping

studies provide a means to define the architecture of the prote-

ome independent of investigator biases, and in comparison to

the literature-curated dataset, PPIs detected by PCP-SILAM

are distributed more homogeneously (Figure 3G). However, we

anticipated that the untargeted nature of our in vivo approach

could result in a reduced capacity to detect interactions for lowly

expressed proteins, compared to targeted approaches. To test
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this notion, we re-organized both the literature-curated and

PCP-SILAM interactomes by protein abundance (Schwan-

häusser et al., 2011). Consistent with this expectation, PPIs de-

tected by PCP-SILAM displayed a moderate bias toward more

abundant proteins, whereas interactions detected by small-

scale experiments largely did not (Figure S3E).

To date, large-scale mammalian interactomemapping projects

have typically been performed in yeast or cell lines (Snider et al.,

2015). However, many biologically relevant PPIs may not occur

within these systems. We therefore hypothesized that mapping

the in vivo interactome inphysiological contexts, suchas in individ-

ual tissues, could preferentially reveal novel interactions. Consis-

tentwith thishypothesis,we foundthat tissue-specific interactions

were significantly less likely to have been cataloged in literature-

curated interaction databases (Figure S3F; p < 10�15, Kendall

rank correlation), likely because few small-scale studies have

taken place in vivo. We also investigated whether mapping inter-

actomes in mouse tissues could preferentially provide insights

into interactions involving proteins whose functions are poorly un-

derstood. PCP-SILAM identified interacting partners for 218 pro-

teins of unknown function (Table S5A), and these interactions

were significantly more tissue specific than the interactome

average (Figure 3E; p < 10�15, Kendall rank correlation). Similarly,

wemapped interactions involving 366 proteins for which no inter-

acting partners had previously been detected (interactome ‘‘or-

phans,’’ TableS5B) (Kotlyar et al., 2015) and found that these inter-

actions likewise displayed a significant trend toward increasing

tissue specificity (Figure 3F; p < 10�15, Kendall rank correlation).

Thus, mapping the in vivo interactome of mammalian tissues

can shed light on poorly studied components of the proteome.

Widespread interactome rewiring limits the accuracy of
tissue-specific interactome prediction
In the absence of experimental tissue- or cell-type-specific inter-

actomes, computational methods have been developed to pre-

dict context-specific molecular interaction networks (Greene

et al., 2015; Marbach et al., 2016). Themost widely used strategy

for context-specific interactome prediction proceeds from the

notion that the protein products of two genes can only interact

in a given context if these genes are both expressed. Gene or

protein expression data are overlaid onto a static interactome,

and the subset of the network whose nodes are expressed

above a certain threshold is extracted to generate the context-

specific interactome (Figure 4A) (Bossi and Lehner, 2009; Buljan

et al., 2012; de Lichtenberg et al., 2005). For instance, human tis-

sue transcriptome data from the GTEx project overlaid onto a

draft map of the human interactome by Y2H (Luck et al., 2020)

to infer tissue-specific networks. An alternative strategy is to

construct tissue-specific gene coexpression networks, which

suggest functional association in a given tissue, if not necessarily

physical interaction (Pierson et al., 2015; Saha et al., 2017; Voi-

neagu et al., 2011; Zhang et al., 2013). However, the degree to

which predictions made by these methods capture physiologi-

cally relevant interactome rearrangements is unclear.

Using our PCP-SILAM mouse tissue interactomes as a refer-

ence, we investigated the accuracy of these approaches in pre-

dicting tissue-specific interactomes. We calculated the overlap

between the predicted and PCP-SILAM tissue interactomes
and then compared this overlap to that observed for randomly

rewired networks. Surprisingly, tissue interactomes predicted

based on gene expression were only 2- to 4-fold enriched for

experimentally detected interactions, relative to randomized net-

works (range, 2.3–4.1; Figure 4B). This overlap was highly

significant, but small in magnitude. Overlaying protein or phos-

phoprotein abundance onto static networks, instead of gene

expression, did not substantially improve the overlap (Fig-

ure S4A). Similarly modest enrichment was observed for tis-

sue-specific coexpression networks (Figure 4B), consistent

with previous findings that gene coexpression is a relatively

poor predictor of physical interaction (Fortelny et al., 2017; Küh-

ner et al., 2009). Thus, neither tissue-specific gene or protein

expression, nor coexpression, are sufficient to accurately pre-

dict tissue-specific physical PPIs.

Predicted tissue interactomes also differed markedly in their

topology from experimentally determined interactomes. In inter-

actome networks, the most highly connected (‘‘hub’’) proteins

are slow evolving and physiologically indispensable (Fraser

et al., 2002; Jeong et al., 2001). The hub proteins of predicted tis-

sue interactomes were highly consistent across tissues, with

65%–70% of hubs in each tissue shared between all predicted

networks (Figure 4C). However, we found that hub proteins

were much less consistent in vivo, with only 20 hubs shared

across all tissues (Figure 4C). Moreover, this trend could not

be attributed to differences in proteome coverage between tis-

sues, as most hub proteins were present in all tissue interac-

tomes but differed specifically in their connectivity (Figure S4B).

The identities of the hub proteins themselves in each tissue were

also poorly predicted, with only 3.7%–5.9% of hub proteins

overlapping between predicted and in vivo interactomes (Fig-

ure S4C). More generally, the number of interactions in which

any given protein participates (its degree) was considerably

more variable across tissues in in vivo interactomes than in pre-

dicted networks (Figures 4D, S4D, and S4E). Similarly, proteins

displayed amuch greater tendency to interact with different part-

ners across tissues than was predicted by gene expression

alone (Figures 4E and S4F). These results can be rationalized

on the basis that, in predicted tissue interactomes, a protein ex-

pressed in a given tissue retains all of its interactions with other

proteins expressed in that tissue, since differences in degree can

be caused solely by absence of the protein or its partners from

the tissue in question. Consequently, both the degree of proteins

in the network, as well as the specific identities of their interact-

ing partners, remain artificially stable across tissues.

Taken together, these analyses reveal widespread rewiring of

interactome networks across mouse tissues beyond what is

apparent from gene expression alone, affecting both the specific

interactors of individual proteins and the global topological prop-

erties of physiological interactomes. Critically, the observation

that a pair of proteins can interact in at least one context does

not imply that their expression in a second context is a sufficient

condition to reproduce the interaction. For example, PCP-SILAM

correctly identified the known interaction between the F-actin-

capping protein (CapZ) and the CapZ-interacting protein (CapZIP

or Rcsd1) (Edwards et al., 2014; Eyers et al., 2005). However, the

interaction was specific to heart and muscle, despite robust

expression of the interacting proteins in all seven tissues
Cell 184, 1–17, July 22, 2021 7
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Figure 4. Interactome rewiring limits accuracy of tissue-specific interactome prediction

(A) Schematic illustration of tissue interactome prediction by integration of static interactome maps with tissue-specific gene-expression profiles.

(B) Overlap between PCP-SILAM mouse tissue interactomes and tissue-specific gene coexpression networks or tissue interactomes predicted based on gene

expression, relative to rewired networks. Error bars show the standard deviation.

(C) Overlap in hub proteins across tissues in predicted and PCP-SILAM tissue interactomes.

(D) Variability in protein degree across tissues in predicted and PCP-SILAM tissue interactomes.

(E) Protein rewiring across tissues in predicted and PCP-SILAM tissue interactomes, as quantified by the mean Jaccard index of each protein across all tis-

sue pairs.

(F) Enrichment for interactions found in one to four tissues in predicted and PCP-SILAM tissue interactomes, relative to randomized networks.

(G) PCP-SILAM profiles reveal Rcsd1 and Capza2 interact in heart and muscle, but not brain or kidney, despite expression in all seven tissues. Left, PCP-SILAM

chromatograms for Rcsd1 (red) and Capza2 (blue) in heart and muscle. Middle, summed SILAM ratios for Capza2 and Rcsd1 in each tissue. Right, PCP-SILAM

chromatograms in brain and kidney.

See also Figure S4.
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(Figure 4G). This pattern of tissue specificity could not have been

predicted on the basis of protein expression alone. To evaluate

whether predicted interactomes are depleted for tissue-specific

interactions more systematically, we randomized interaction net-

works for each tissue separately and calculated the total number

of interactions foundacross one to seven randomized tissue inter-

actomes. Consistent with the expectation that gene expression

alone would underestimate the degree of interactome variability

across tissues, predicted interactomes were significantly

depleted for the most tissue-specific interactions, relative to

PCP-SILAM interactomes (Figures 4F and S4F; p < 10�15, Z test).
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Evolution of interactions in mammalian tissues
Extrapolation of physical interactions detected in one organism

to orthologous pairs of proteins in a different organism has

been widely used to predict the interactomes of non-model or-

ganisms, or increase coverage of the human interactome (Li

et al., 2017; Matthews et al., 2001; Yu et al., 2004). However, tis-

sues may execute specialized biological functions that are less

conserved between organisms than ubiquitous ‘‘housekeeping’’

processes (Zhang and Li, 2004). We hypothesized that more tis-

sue-specific interactions would show less evidence of evolu-

tionary conservation than those occurring across many tissues.
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Figure 5. Evolution of mammalian tissue interactomes

(A) Proportion of mouse interactions conserved in worm, fly, and yeast for interactions detected in one to seven tissues.

(B) Differences in evolutionary rates between interacting protein pairs detected in one to seven tissues.

(C) Correlations in phylogenetic profiles between interacting protein pairs detected in one to seven tissues.

(D and E) Connectivity between housekeeping proteins and proteins quantified in one to seven tissues, in each mouse tissue interactome (D) and aggregated

across mouse tissues (E), expressed as a Z score relative to randomly rewired networks.

See also Figure S5.
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Examining literature-curated interactions for three model organ-

isms, and five recent human high-throughput interactome

screens, we found that tissue-specific interactions were less

likely to be evolutionarily conserved (Figures 5A and S4A; p <

10�15 for model organisms and humans respectively, Fisher inte-

gration of Kendall rank correlations). Protein pairs that made tis-

sue-specific interactions likewise co-evolved at less similar rates

(Figure 5B; p < 10�15, Kendall rank correlation), and had less

correlated patterns of presence and absence across eukaryotic

genomes (Figure 5C; p < 10�15) relative to universal interactions

(Fraser et al., 2002; Pellegrini et al., 1999). Thus, both experi-

mental screens and large-scale genomic data highlight the

evolutionary novelty of tissue-specific interactions.

We next asked whether tissue-specific interactions predomi-

nantly arise from tissue-specific rewiring of ancient proteins, or

whether they instead involve evolutionarily young proteins. Rela-

tive to universal interactions, tissue-specific interactions dispro-

portionately involved younger proteins (Figure S5B; p < 10�15).

Furthermore, ancient proteins had more conserved interaction

partners across tissues, whereas younger proteins were dispro-

portionately rewired between tissue interactomes (Figure S5C;

p < 10�15), suggesting that rewiring of ancient proteins is insuffi-

cient to explain the evolution of new tissue-specific interactions.
Previous analyses of predicted tissue interactomes identified

extensive interactions between proteins expressed in only a sub-

set of tissues and those expressed in all tissues (housekeeping

proteins), proposing a model wherein tissue-specific functions

arise by recruiting core cellular processes (Bossi and Lehner,

2009). Motivated by our observation that interactome rewiring

is poorly predicted by tissue-specific gene expression, we inves-

tigated whether PCP-SILAM data supported this model. To

quantify the extent of cross-talk between housekeeping and

tissue-specific proteins, we randomly rewired each tissue inter-

actome and compared the number of interactions between pro-

teins at each level of tissue specificity to the number observed in

randomized networks (Figure S5D). In every tissue, house-

keeping proteins displayed highly significant enrichment for

interactions with other housekeeping proteins (Figure 5D). In

contrast, we observed systematic depletion of interactions

between tissue-specific and housekeeping proteins compared

to randomized networks, particularly when aggregating

results across all seven tissues (Figure 5E). Experimental tissue

interactome mapping therefore suggests that evolutionarily

novel tissue-specific interactions accomplish tissue-specific

functions largely independent of the core modules of universal

interactions.
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Taken together, these analyses contrast two systems: core

cellular modules present across all mouse tissues, and acces-

sorymodules that execute specialized functions within individual

tissues. The former involves ancient proteins that have co-

evolved over long evolutionary time frames, and whose interac-

tion partners are preserved across species and tissues. In

contrast, tissue-specific interactions are less often conserved

in other species and disproportionately involve younger proteins.

Remarkably, we observe suppression of cross-talk between

these two systems, with significant depletion of interactions be-

tween tissue-specific and universal proteins.

Tight regulation of tissue-specific interaction rewiring
Having established that evolutionarily ancient proteins have

significantly more stable interaction partners across tissues

than the interactome average, we sought to further characterize

the properties of proteins whose interactions are disproportion-

ately rewired in a tissue-specific manner. To quantify the degree

of interaction rewiring across tissues for each protein, we

compared the similarity of its interaction partners across all pairs

of tissues using the Jaccard index (Figure 6A). Proteins with a

higher Jaccard index participate in interactions that are pre-

served across mouse tissues, whereas proteins with a low Jac-

card index have interaction partners that are more rewired.

As expected, members of known protein complexes were

significantly less rewired across tissues (Figure 6B; p < 10�15,

one-tailed Brunner-Munzel test). However, GO enrichment anal-

ysis failed to identify functional categories overrepresented

among rewired proteins. We therefore asked whether protein

structural features instead would be predictive of rewiring. We

hypothesized that intrinsically disordered proteins, which lack

a unique structure, would possess the increased interaction sur-

face area and conformational flexibility necessary to interact with

multiple target proteins. Indeed, disordered proteins were signif-

icantly more rewired than their structured counterparts (Fig-

ure 6C; p = 7.8 3 10�7). Disordered protein segments often

embed short peptide interaction motifs that can be bound by

globular domains (Davey et al., 2012), and proteins containing

such linear motifs were likewise significantly more rewired (Fig-

ure 6D; p = 1.3 3 10�6). Intrinsically disordered regions are

also known to be hotspots for protein phosphorylation (Iakou-

cheva et al., 2004), raising the possibility that interaction rewiring

may be coordinated by tissue-specific post-translational modifi-

cation. Consistent with this possibility, phosphoproteins were

enriched among rewired proteins (Figure 6E; p = 3.7 3 10�4),

and phosphosites on rewired proteins were significantly more

tissue-specific than those found on universal proteins (Fig-

ure S6A; p = 7.33 10�5, Spearman rank correlation). Partial cor-

relation analysis confirmed the enrichments for both linear motifs

and phosphosites were independent of intrinsic disorder (p =

1.23 10�3 and 6.03 10�3, respectively). Collectively, these find-

ings suggest that bindingmotifs and post-translational modifica-

tion sites embedded within intrinsically disordered regions facil-

itate the rewiring of protein interaction partners across

mammalian tissues.

Disordered proteins are frequently involved in signaling path-

ways or mediate regulatory functions (Ward et al., 2004). We

therefore hypothesized that rewiring of PPIs across tissues could
10 Cell 184, 1–17, July 22, 2021
facilitate tissue-specific signaling processes. Consistent with

this hypothesis, tissue-specific interactions were significantly

more likely to involve protein kinases, transcription factors, and

cell-surface protein receptors (Figures S6B–S6D; p < 10�15,

p = 5.5 3 10�13, and p = 2.0 3 10�5, respectively, Kendall rank

correlation). In addition, we calculated the betweenness central-

ity of each interaction, defined as the number of shortest paths

across the network that pass through each edge. Edges with a

high betweenness centrality in interactome networks are associ-

ated with information flow across the network (Yan et al., 2016),

and, in agreement with this notion, we found tissue-specific in-

teractions to have a significantly higher centrality than universal

interactions (Figure 6F; p < 10�15, Kendall rank correlation).

Thus, both molecular and network topological perspectives

highlight the key role of tissue-specific interactions in propa-

gating biological information within tissue-specific pathways.

Within the cell, precise coordination of macromolecular

interactions is required for accurate transmission of biological in-

formation. We therefore hypothesized that proteins whose inter-

action partners are highly variable across physiological contexts

would be subject to tight regulatory mechanisms and asked

whether specific cellular strategies regulate the availability of re-

wired proteins. mRNAs encoding rewired proteins were ex-

pressed at lower levels, had shorter half-lives, and were tran-

scribed at slower rates (Figures S6E–S6G; p = 2.5 3 10�14,

4.63 10�5, and 1.73 10�13, respectively, Spearman rank corre-

lation) than proteins with more stable interaction partners. Re-

wired proteins themselves were also less abundant (Figure 6G;

p < 10�15), and this difference in abundance was controlled

both by a reduced rate of translation and increased rate of degra-

dation (Figures 6H and 6I; both p < 10�15), suggesting multiple

cellular mechanisms converge to tightly regulate the abundance

of proteins whose interacting partners are rewired across tis-

sues. Disordered proteins are known to be tightly regulated

(Gsponer et al., 2008), but partial correlation analysis confirmed

the tight regulation of rewired proteins was independent of pro-

tein disorder for all outcomes (p% 5.03 10�6, partial Spearman

correlation). Moreover, to rule out the possibility that these asso-

ciations reflected technical limitations in the identification or

quantification of low-abundance proteins, we re-calculated the

Jaccard index after excluding low-abundance proteins or pro-

teins identified in only a subset of tissues, finding that all associ-

ations remained significant (all p % 1.8 3 10�3, Spearman rank

correlation; Figure S6H).

Given this tight regulation of rewired proteins, we further asked

whether proteins whose interaction partners are highly rewired

between tissues were associated with deleterious phenotypes.

Remarkably, we found that disease genes were significantly

more rewired across tissues than the interactome average (Fig-

ure 6J; p = 1.1 3 10�2). Many human diseases are caused by

germline mutations that are present in virtually every cell in the

body, but which manifest in pathology in only one or a handful

of tissues (Lage et al., 2008). We therefore drew on a resource

of disease genes linked to tissue-specific pathologies (Basha

et al., 2020) to ask whether the protein products of these genes

are preferentially interconnected in the interactomes of the dis-

ease-associated tissues, as has long been hypothesized (Barshir

et al., 2014; Hekselman and Yeger-Lotem, 2020; Kitsak et al.,



A B C D E

F G H I

J K L

Figure 6. Tight regulation of interaction rewiring

(A) Schematic overview of the mean Jaccard index calculation.

(B) Members of known protein complexes display a lesser degree of interaction rewiring across tissue interactomes.

(C) Intrinsically disordered proteins display a greater degree of interaction rewiring across tissue interactomes.

(D) Proteins containing protein-binding linear motifs display a greater degree of interaction rewiring across tissue interactomes.

(E) Phosphoproteins display a greater degree of interaction rewiring across tissue interactomes.

(F) Betweenness centrality of interactions detected in one to seven tissues.

(G–I) Rewired proteins are characterized by low abundance (G), short half-lives (H), and slow translation rates (I).

(J) Disease genes display a greater degree of interaction rewiring across tissue interactomes.

(K) Disease genes associated with diseases that manifest in a specific tissue are more interconnected in the disease-associated tissue than in non-matched

tissues.

(L) PCP-SILAM detects a brain-specific interaction between Iqgap2 and Cryab, an intrinsically disordered protein and disease gene.

See also Figure S6.
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2016; Magger et al., 2012). Indeed, the mean shortest paths be-

tween disease genes were significantly smaller in disease-associ-

ated tissues (Figure 6K; p = 5.43 10�4), indicating the formation of

tissue-specific diseasemodules (Menche et al., 2015a). The inter-

action between Cryab, a heat stock protein with an intrinsically

disordered C-terminal segment implicated in a number of neuro-
logical disorders (Baldwin et al., 2012; Kuipers et al., 2017), and

Iqgap2, a multifunctional signaling protein required for axon

outgrowth (Wang et al., 2007), provides an example of disease

gene rewiring between tissues. PCP-SILAM detected the interac-

tion in brain, but not kidney or muscle, despite robust expression

of the interacting proteins in all three tissues (Figure 6L).
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Taken together, these analyses highlight the role of protein-

binding motifs and post-translational modification sites within

disordered regions in mediating interaction rewiring across

physiological contexts. The resulting tissue-specific interactions

are associated with transmission of biological information in tis-

sue-specific signaling pathways. Highly rewired proteins are

subject to tight regulation by multiple convergent cellular mech-

anisms, perhaps to ensure the fidelity of biological information

flow, and the elevated rate of interaction rewiring among disease

genes implicates dysfunction of this regulatory cascade in dis-

ease pathophysiology. Notably, disease genes are preferentially

interconnected in the interactomes of the tissues in which dis-

ease manifests, suggesting that mapping context-specific

interactomes will be critical to elucidate the disease modules un-

derlying pathobiology (Menche et al., 2015a).

DISCUSSION

Charting the complete protein-protein interactome is essential to

revealing the molecular origins of cellular processes. However,

earlier efforts produced static interactome maps that are funda-

mentally limited with respect to understanding interaction rewir-

ing across tissue- or cell-type-specific contexts. By applying

PCP-SILAM to map the in vivo interactomes of seven mouse tis-

sues, we provide a systematic, proteome-scale resource to un-

derstand the dynamic physiological interactome. We provide an

interactive web application to facilitate exploration of the com-

plete dataset, available at https://tissue-interactomes.msl.ubc.

ca/.

In the absence of high-throughput methods to define context-

specific in vivo interactomes, computational methods have been

developed to predict interactome rewiring based on gene

expression (Bossi and Lehner, 2009; Buljan et al., 2012; de Lich-

tenberg et al., 2005). We find that widespread and physiological

interactome rewiring limits the accuracy of tissue interactome

predictions based on patterns of gene expression or coexpres-

sion. The result is that these predicted networks bear little

resemblance to those we observe in biological tissues, given

the opportunity to make such observations experimentally.

Together, these findings reinforce conclusions from targeted

studies, which have revealed marked dissimilarities in PPIs

across cell lines (Floyd et al., 2016; Jäger et al., 2011), between

cellular compartments (Markmiller et al., 2018), in response to

cellular stimulation (Kerr et al., 2020; Kristensen et al., 2012), or

in disease-relevant contexts (Pankow et al., 2015; Shirasaki

et al., 2012). In yeast, widespread interaction rewiring has been

observed in response to environmental perturbations (Celaj

et al., 2017; Liu et al., 2020). Our systematic screen builds on

these findings, revealing interactome rewiring at a much larger

scale and across healthy mammalian tissues.

Evolutionary analyses of mouse tissue interactomes contrast

core cellular modules composed of evolutionarily ancient pro-

teins that are connected via universal interactions with evolution-

arily recent proteins that interact in a more tissue-specific

manner and are associated with cellular signaling. Intrinsically

disordered proteins are particularly predisposed to interaction

rewiring across tissues, consistent with the notion that these

proteins can adopt new interacting partners over rapid evolu-
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tionary timescales (Hultqvist et al., 2017). Our findings linking

proteins containing linear motifs or intrinsically disordered re-

gions to an in vivo program of interactome rewiring substantiate

previous bioinformatic or in vitro analyses, which suggested that

alternative splicing of disordered protein-coding exons can facil-

itate interactome remodeling (Buljan et al., 2012; Ellis et al., 2012;

Romero et al., 2006). Proteins whose interactions are highly re-

wired across tissues are subject to tight cellular regulation and

are implicated in disease, suggesting dysfunction of this regula-

tory program may underlie deleterious phenotypes. Intriguingly,

topological analyses reveal the formation of tissue-specific

disease modules for genes implicated in tissue-specific pathol-

ogies, potentially explaining the phenomenon whereby muta-

tions present in every cell in the body lead to dysfunction in

only a subset of tissues.

The quantitative proteomic method presented in this study,

PCP-SILAM, has the advantage of being an untargeted and rela-

tively unbiased technique, apart from its moderate bias toward

proteins of higher cellular abundance. As a high-throughput

technique for in vivo interactome mapping, PCP-SILAM is

uniquely suited to the discovery of interactions across multiple

physiological conditions. To date, related co-fractionation

mass-spectrometry approaches have primarily been applied to

identify evolutionarily conserved protein-protein interactions by

acquiring data from multiple species (McWhite et al., 2020;

Wan et al., 2015), or to analyze interactome rewiring in response

to a stimulus within a single cell line (Heusel et al., 2020; Kerr

et al., 2020; Kristensen et al., 2012; Scott et al., 2015, 2017).

Our work extends these co-fractionation approaches to interro-

gate interactome rewiring across multiple tissues in vivo. The re-

sulting interactomes access previously unmapped regions and

functional classes within the mouse interactome, and place

poorly studied mouse proteins into tissue-specific functional

contexts, suggesting PCP-SILAM will be a valuable method to

shed light on poorly understood components of the proteome.

Whereas our analytical approach to characterizing interac-

tome rewiring took the form of comparing inferred networks

across tissues, the use of a global reference mixture in PCP-SI-

LAM expectantly provides a basis for a more quantitative com-

parison of interaction dynamics. Emerging ‘‘complex-centric’’

analysis strategies take advantage of the information provided

by co-fractionation mass spectrometry to quantify protein com-

plex abundance and stoichiometry (Bludau et al., 2020; Heusel

et al., 2019), and the technical precision of PCP-SILAM should

provide excellent support for such analyses. At present, howev-

er, these strategies are designed primarily for the analysis of

known interactions. Approaches that extend complex-centric

paradigms to the simultaneous discovery and quantification of

novel interactions (Rosenberger et al., 2020) will likely add further

resolution to co-fractionation datasets in future work.

Limitations of the study
Some limitations of the present study should be noted. First,

we find that the technical precision of protein quantifications

based on SILAM ratios is high, in comparison to quantifications

based on the light channel only. However, this comparison is

limited by the fact that the dynamic range of protein quantifica-

tion would expectantly be higher in an experiment without any

https://tissue-interactomes.msl.ubc.ca/
https://tissue-interactomes.msl.ubc.ca/
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isotopic labeling, precluding a true head-to-head comparison

with a label-free experiment. A second consideration that bears

emphasis is that while the vast majority of the 125,00 unique

interactions identified here had not previously been reported

in mouse, some of them had been previously identified in hu-

man. A broader limitation is that the seven tissues analyzed

here are each composed of multiple distinct cell types, which

expectantly also have their own cell-type-specific interac-

tomes. Future efforts will be necessary to increase the resolu-

tion of in vivo interactome mapping to the level of cellular

subpopulations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Talin Santa Cruz Sc-365875

Biological samples

C57BL/6mice F2 Lys-6 labeled brain, heart,

thymus, liver, kidney, skeletal muscle, lung

Produced in house from C57BL/6 mice F0,

Charles River Laboratories (Lys-6 diet)

N/A

C57BL/6mice F2 Lys-0 labeled brain, heart,

thymus, liver, kidney, skeletal muscle, lung

Produced in house from C57BL/6 mice F0,

Charles River Laboratories (unlabelled diet)

N/A

C57BL/6 mice F1 (lung, skeletal muscle,

kidney, liver, thymus, heart, brain) for

immunoprecipitation validation

Produced in house from C57BL/6 mice F0,

Charles River Laboratories (unlabelled diet)

N/A

Chemicals, peptides, and recombinant proteins

MouseExpress L-LYSINE (13C6, 99%)

IRRADIATED MOUSE FEED 8G/KG

OF L-LYSINE 13C6

Cambridge Isotope Laboratories, Inc. MF-LYS-C-LOW-IR

MouseExpress UNLABELED MOUSE

FEED IRRADIATED

Cambridge Isotope Laboratories, Inc. MF-UNLABELED-LOW-IR

Halt Protease and Phosphatase

Inhibitor Cocktail

Thermo Scientific, San Jose CA 78442

Lysyl Endopeptidase (Lys-C) Wako Pure Chemical Industries, Ltd., Japan 125-05061

Deposited data

Raw mass spectrometry proteomics data This paper ProteomeXchange Consortium:

PXD007288 and PXD022309

Processed chromatograms This paper EMBL–EBI BioStudies database:

S-BSST152

Experimental models: Organisms/strains

C57BL/6 mice F0 Charles River Laboratories Strain code 027

Software and algorithms

MaxQuant https://www.maxquant.org/ Versions 1.5.3.30, 1.5.5.1, 1.6.5.0

PrInCE https://github.com/fosterlab/PrInCE Version 1.5.0

Other

Vivaspin� 2 ultrafiltration centrifugal

concentrators (100,000 Da MWCO)

Sartorius Stedim,

Goettingen, Germany

VS0241

BioSep-4000 SEC column (300 3 7.8 mm) Phenomenex 00H-2147-K0

UniFilter 800 96-well Filtration microplates GE Healthcare Life Sciences 7700-2803

5.0-mm Aqua C18 packing material Phenomenex 00F-4299-E0

ReproSil-Pur C18 AQ 1.9 mm Dr. Maisch, Ammerbuch-

Entringen, Germany

R119 aq.0001
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Leonard

Foster (foster@msl.ubc.ca).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaı́no et al., 2014) via the

PRIDE partner repository (Vizcaı́no et al., 2016) with the dataset identifiers PXD007288 and PXD022309. In addition, processed chro-

matograms for each tissue have been deposited to the EMBL-EBI BioStudies database (Sarkans et al., 2018), with accession S-

BSST152.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Protocols for the generation of SILAM labeled and unlabelled tissues were approved by the University of British Columbia Animal Care

Committee in accordancewith international guidelines (protocol number: A13-0094). SILAM colonies and unlabelled littermate controls

were generated according to the approach of Krüger et al. (Krüger et al., 2008; Zanivan et al., 2012). Briefly, two sets of female andmale

littermate C57BL/6 mice (Charles River Laboratories) aged 8 weeks were segregated into separate cages and female mice fed either a

SILAC chow diet (8 g 13C6-Lysine/kg, Cambridge Isotope Laboratories, Andover, MA) or unlabelled matched chow diet differing only in

the incorporation of 13C6-Lysine. After 10 weeks of SILAC feeding, male mice were introduced to F0 SILAM females to allow mating.

The resulting F1 SILAMmicewere allowed to develop to 8weeks andwere subjected to another round ofmating to generate F2 SILAM

mice. F2 SILAM mice were allowed to develop to 8 weeks prior to tissue isolation and protein complex extraction. In parallel to the

generation of SILAM mice, unlabelled mice were derived from littermates of the F0 SILAM breed and allowed to develop to 8 weeks.

Tissues were harvested from 8-week old C57BL/6male mice. Animals were housed with littermates of the same sex, up to 4 per cage,

with environmental enrichment according to the University of British Columbia Animal Care requirements.

METHOD DETAILS

SILAM incorporation monitoring
SILAM incorporation ratesweremonitored in femalemice during the generation of F1 and F2 litters. For blood sample collection, mice

were anesthetized with isoflurane and�20 mL of blood was collected by tail snipping every month during SILAM feeding. Tomeasure

isotope incorporation, the medulla oblongata was collected during animal termination of F0, F1 and F2 mice. Blood and medulla ob-

longata samples for SILAM incorporation analysis were snap frozen in liquid nitrogen and stored at –80�C. Sampleswere boiled in 1%

sodium deoxycholate, digested, and quantified as described below.

Tissue harvesting
Mice were terminally anesthetized with isoflurane and after the loss of corneal reflexes moved to a chilled surgical platform. To limit

blood contamination within tissues and inhibit phosphatase and protease activity, the heart was exposed by Y-incision and mice

perfused with 50 mL of ice-cold size exclusion chromatography (SEC) mobile phase [50 mM KCl, 50 mM NaCH3COO, pH 7.2, con-

taining 2x cOmplete protease inhibitor cocktail without EDTA (Roche) and 2x Halt protease and phosphatase inhibitor cocktail

(Thermo Scientific, San Jose CA)]. Perfusate was introduced into the left ventricle by précising the ventricle wall with a needle while

the right ventricle was cut to allow drainage. Upon complete blanching of the liver, the seven tissues of interest (heart, brain, thymus,

liver, kidney, skeletal muscle, and lung) were removed, rinsed with ice-cold SEC buffer and placed into ice-cold SEC containing 2x

protease inhibitor cocktail without EDTA and 2x protease and phosphatase inhibitor cocktail. Tissues were further cut into smaller

pieces to enhance accessibility of inhibitors and placed on ice.

Preparation of cytoplasmic complexes
Complex preparation of dissected tissues and size exclusion chromatography were performed as described previously (Kristensen

etal., 2012),withminormodifications.Briefly, tissuessampleswere lysedusingaDouncehomogenizerwith200strokesofa loosepestle

followed by 200 strokes with a tight pestle. Lysates were ultracentrifuged at 100,000 relative centrifugal force (r.c.f.) for 15min at 4�C to

remove insoluble material and to partially deplete highly abundant ribosomes. Large molecular weight complexes were then concen-

trated using 100,000Damolecular weight cut-off spin columns (Sartorius Stedim,Goettingen, Germany). Fivemilligramsof total filtered

protein was then immediately loaded onto a chromatography systemconsisting of two 3003 7.8mmBioSep-4000Columns (Phenom-

enex, Torrance, CA) equilibrated with SECmobile phase and separated into 80 fractions by a 1200 Series semi-preparative HPLC (Agi-

lent Technologies, SantaClara,CA) at a flow rate of 0.5mL/minat 8�C.TheHPLCconsistedof aG1310A isocratic pump,G7725imanual

injector, andG1364 fraction collector with aG1330 thermostat. Fractions 1 to 55 corresponded tomolecular weights from2MDa to 100

KDa, as determined by the use of common SEC standards thyroglobulin, apoferritin and bovine serum albumin (Sigma-Aldrich). Each

tissue was separated independently by SEC for both labeled and unlabelled samples. Fractions 1 to 55 from the seven heavy-labeled

tissue preparations were pooled and served as an internal reference allowing the comparison between and across all samples. The

pooled reference was spiked into each of the corresponding light fractions at a volume of 1:0.75 (light to heavy).

In-solution digestion
Individual PCP-SILAM samples were prepared using in-solution digestion as previously described (Rogers et al., 2010). Briefly, so-

dium deoxycholate was added to each fraction to a final concentration of 1.0% (w/v) and samples boiled for 5 min. Boiled samples
Cell 184, 1–17.e1–e8, July 22, 2021 e2
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were allowed to cool to RT then reduced for 1 hour with 10mMdithiothreitol (DTT) at room temperature. Samples were then alkylated

for 1 h with 20 mM iodoacetamide (IAA) in the dark at room temperature and excess IAA quenched with 40mM DTT for 20 min. Two

micrograms of Lys-C (Wako) was added to each fraction and samples were incubated overnight at 37�Cwith shaking. Samples were

acidified to pH < 3 with acetic acid to precipitate deoxycholic acid, which was then removed by centrifugation at 16,000 r.c.f. for

20 min. To ensure the removal of particulate matter, peptide digests were further clarified using Unifilter 800 Whatman filter plates

(GE Healthcare Life Sciences). The resulting peptide supernatant was purified using self-made Stop-and-go-extraction tips (Stage-

Tips) (Rappsilber et al., 2007) composed of C18 Empore material (3M) packed into 200 mL pipette tips. Prior to addition of the peptide

solution, StageTips were conditioned with methanol, followed by 80% MeCN, 0.1% formic acid (Buffer B), then 0.1% formic acid

(Buffer A). Peptide supernatants were loaded onto columns and washed with three bed volumes of Buffer A. Peptide samples

were stored directly on stage tip at 4�C until required, when they were eluted with Buffer B directly into a HPLC autosampler plate

and dried using a vacuum concentrator. An alternative in-solution digestion method was used for a subset of sample sets. For these,

each fraction was denatured with 6 M urea / 2 M thiourea, reduced for 30 min with 10 mM DTT at room temperature, alkylated for

30 min with 20 mM IAA in the dark at room temperature. A mixture of 1.5 mg of Lys-C, 4 mMDTT, and 50mM ammonium bicarbonate

was added to each fraction to dilute urea to 2 M and incubated overnight at room temperature with shaking. The peptides were pu-

rified with Stage Tips, eluted, and dried using a vacuum concentrator.

Mass spectrometry
Prior to LC-MS/MS analysis, samples were resuspended in 15 mL Buffer A. One of three LC-MS/MS was used: one subset was ac-

quired using an EASY-nLC1000 system (Thermo Scientific) coupled to a Q-Exactive mass spectrometer (Thermo Scientific). Another

subset used a Dionex Ultimate 3000UHPLC (Thermo Scientific) coupled to aQ-Exactive plusmass spectrometer (Thermo Scientific).

The final subset used an EASY-nLC1000 (Thermo Scientific) coupled to a quadrupole–time of flight mass spectrometer (Impact II;

Bruker Daltonics). LC-MS/MS was accomplished using a two-column system in which samples were concentrated prior to separa-

tion on an in-house packed 2 cm long, 100 mm inner diameter fused silica fritted trap column containing 5 mmAqua C18 beads (Phe-

nomenex) and then separated using an in-house packed C18 analytical 75-mm inner diameter column composed of 35 cm ReproSil-

Pur C18 AQ 1.9 mm (Dr. Maisch, Ammerbuch-Entringen, Germany) column with an integrated spray tip (6–8 mm-diameter opening,

pulled on a P-2000 laser puller from Sutter Instruments) that is held at 50�C by an in-house built column heater or a PepMap100 C18

20 mm x 75 mm trap and a PepMap C18 500 mm x 75 mm analytical column (Thermo Fisher Scientific). Samples were concentrated

onto the trap for 5 min using 100% Buffer A at 5 L/min after which the gradient was altered from 100% Buffer A to 40% Buffer B over

180 min at 250 nL/min with the eluting peptides infused directly into the mass spectrometers via nESI. An alternative gradient was

shortened to 150 min separation. The Q-Exactive and Q-Exactive Plus were operated in a data-dependent manner using Xcalibur

(Thermo Scientific) with the top ten most intense multiply-charged ions above a 5% underfill ratio from MS1 scans (resolution

70,000; 350-2,000 m/z, AGC target of 3 3 106) selected for HCD MS-MS events (resolution 17.5k AGC target of 1 3 106 with a

maximum injection time of 60 or 120 ms, NCE 28 with 20% stepping) with 25 s dynamic exclusion enabled. The Impact II was oper-

ated in a data-dependent auto-MS/MS mode with inactive focus fragmenting the 20 most abundant ions (one at the time at 18 Hz

rate) after each full-range scan from m/z 200 to m/z 2000 at 5 Hz rate. The isolation window for MS/MS was between 2 and 3 units

depending on the parent ion mass to charge ratio, and the collision energy ranged from 23 to 65 eV depending on ion mass and

charge. Parent ions were then excluded from MS/MS for the next 0.4 min and reconsidered if their intensity increased more than

five times. Singly charged ions were excluded from fragmentation.

Co-immunoprecipitation
For talin immunoprecipitations, brain and liver tissues collected from 3mice (B10, male, 10-week old), were rinsed in ice cold in size-

exclusion chromatography (SEC) mobile phase (50 mM Tris, 50 mM KCl, 50 mM NaCH3COO, pH 7.2) including protease inhibitors

without EDTA (Roche) and phosphatase inhibitors (1 mM sodium orthovanadate, 5 mM sodium pyrovanadate and 0.5 mM pervana-

date) and placed on ice. Tissues (100-200 mg) were individually disrupted in a Dounce homogenizer (2 min, tight dounce) in 2 mL of

ice-cold size-exclusion chromatography (SEC) mobile phase (50 mM Tris, 50 mM KCl, 50 mM NaCH3COO, pH 7.2) including prote-

ase inhibitors without EDTA (Roche) and phosphatase inhibitors (1 mM sodium orthovanadate, 5 mM sodium pyrovanadate and

0.5 mM pervanadate). The resulting lysates were clarified by centrifugation (15 min; 4�C; 16000 r.c.f.) and 1 mL of each supernatant

was used for immunoprecipitation using C-9 mouse monoclonal talin antibody (sc-365875, Santa Cruz) following the manufacturer’s

protocol. Briefly, the lysates were pre-cleared for 30min usingmouse IgG and protein L-agarose (sc-2336, Santa Cruz), incubated for

30 min with 2 mg of primary antibody, followed by 30 min incubation with protein L-agarose. The bound beads were washed twice

with ice-cold SEC buffer and the protein eluted by boiling with the Laemmli buffer. The resulting proteins were subjected to SDS-

PAGE, in gel-digested, purified on STAGE tips and analyzed my mass spectrometry.

Ribosome isolation
Tissues were harvested from two 10-week old C57BL/6 male mice and rinsed two times in PBS. Tissues were then minced using a

scalpel and suspended in 3 mL of Ribosome Homogenization Buffer (50 mM Tris-HCl pH 7.5, 5 mM MgCl2, 25 mM KCl, 0.2 M su-

crose). Tissue samples were homogenized for 1 min using a loose Dounce homogenizer followed by 2 min in a tight Dounce homog-

enizer. Lysates were clarified through centrifugation using a Sorvall Surespin 630 rotor at 20,000 r.c.f. for 10 min at 4�C. The crude
e3 Cell 184, 1–17.e1–e8, July 22, 2021
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lysates were then layered over a sucrose cushion (50 mM Tris-HCl pH 7.5, 5 mMMgCl2, 25 mM KCl, 2 M sucrose) at a 1:1 (v/v) ratio.

Subsequently, samples were ultracentrifuged at 100,000 r.c.f. for 24 h at 4�C. The resulting pellet was resuspended in Ribosome Ho-

mogenization Buffer. Protein concentration was determined via NanoDrop (Thermo Fisher). Equals amount of protein from each tis-

sue sample was then denatured with 6M urea, reduced with 1 mg of DTT, alkylated with 2.5 mg of iodoacetamide, followed by adding

four volumes of 50 mM NH4HCO3 and subjected to trypsin digestion overnight at room temperature. Peptide samples were cleaned

via STAGE tips and analyzed by LC-MS/MS. The raw data was searched using MaxQuant version 1.5.3.30 with variable modifica-

tions: acetylation (K), deamidation (NQ), and oxidation (M); fixedmodifications: carbamidomethyl (C); and label-free quantitation with

a minimum ratio count of 1. The resulting LFQ intensities were normalized to the median ribosomal protein intensity in each replicate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomic data analysis
MaxQuant (versions 1.5.5.1 and 1.6.5.0) (Tyanova et al., 2016) was used for identification and quantification of the resulting exper-

iments. Database searching was carried out against the UniProtMus musculus database (downloaded August 17, 2014; 49,235 en-

tries), augmented with common contaminants, with the following search parameters: carbamidomethylation of cysteine as a fixed

modification, oxidation ofmethionine, and acetylation of protein N-termini. The digestionmodewas either semi-specific LysC or spe-

cific LysC with a maximum of two missed cleavages. A multiplicity of two was used, denoting the SILAM amino acid combinations

(light lysine and heavy lysine respectively). The precursor mass tolerance was set to 7 parts-per-million (ppm) andMS/MS of 10 ppm,

with a maximum false discovery rate of 1% set for protein identifications and peptide-spectrummatches, which was filtered to 1% at

the peptide and protein level after peptide score correction. To enhance the identification of peptides between fractions and repli-

cates, the match between runs option was enabled with a precursor match window set to 2 min and an alignment window of 10 min.

Potential contaminants, reverse hits, and proteins identified only by modified peptides were removed. Protein groups were mapped

to gene symbols, retaining only the chromatogram with the greatest number of non-missing observations in cases where multiple

protein groups mapped to a single symbol. These steps yielded a matrix reflecting the abundance of 7,225 proteins across 770

SEC fractions.

To evaluate the accuracy of SILAM-based protein quantification, we compared the SILAM ratios to quantifications based on the

MS1 intensities in the light channel only. We computed two measures of quantitative precision: the coefficient of variation between

biological replicates for individual protein quantifications; and the rank correlations between biological replicates across entire pro-

tein chromatograms. Additionally, we compared the total number of proteins by either method through a downsampling analysis,

drawing 100 random samples of between 1 and 770 SEC fractions and computing the total number of proteins quantified in each

sample.

To evaluate the reproducibility of PCP-SILAM, we computed the Spearman correlations between each biological replicate from the

same tissue, and compared these to correlations between biological replicates in published, cell-line-based PCP-SILAC data from

three studies (Kerr et al., 2020; Scott et al., 2015, 2017), collectively representing a total of 26 replicate pairs. We additionally per-

formed hierarchical clustering of all fourteen PCP-SILAM replicates, using the Spearman correlation as the similarity measure.

To evaluate the statistical power of PCP-SILAM to resolve known protein complexes, we reproduced a receiver operating char-

acteristic (ROC) analysis (Romanov et al., 2019) of large-scale shotgun proteomics datasets (Battle et al., 2015; Carlyle et al.,

2017; Chick et al., 2016; Geiger et al., 2012, 2013; Guo et al., 2015; Khan et al., 2013; Kustatscher et al., 2019; Parker et al.,

2019; Wu et al., 2013), additionally comparing to matched transcriptomic (Battle et al., 2015; Carlyle et al., 2017; Chick et al.,

2016; van Heesch et al., 2019; Khan et al., 2013), and translatomic (Battle et al., 2015; van Heesch et al., 2019) data when possible.

Briefly, the Pearson correlation was calculated between each gene or protein pair in every dataset, and pairs quantified in fewer than

ten overlapping samples were filtered tomitigate the impact of spurious correlations. Then, gene or protein pairs were labeled as true

positives and true negatives based on the dataset of protein complexes manually curated by (Ori et al., 2016), calling intra-complex

pairs as true positives and inter-complex pairs as true negatives. Finally, we used these labels to calculate the area under the receiver

operating characteristic curve (AUC), using the ‘AUC’ R package. We additionally compared the AUC in in vivo PCP-SILAM data to

in vitro data from four previous PCP-SILAC studies using the same procedure (Kerr et al., 2020; Scott et al., 2015, 2017; Stacey et al.,

2018), observing no significant difference.

Interactome network inference
PrInCE (Stacey et al., 2017), an open-source pipeline for co-fractionation mass spectrometry data analysis, was used to reconstruct

high-confidence interactomes from PCP-SILAM profiles. PrInCE first performs basic data filtering and preprocessing, then applies a

machine-learning approach to rank interactions, and returns as output a list of interactions at a given precision threshold. Briefly, single

missing values are imputed as the mean of neighboring intensities, proteins detected in fewer than five fractions are filtered, and co-

fractionation profiles are smoothed by a sliding average with a width of five fractions. Next, mixtures of one to five Gaussians are fitted

to each profile, and model selection is performed using the bias-corrected Akaike information criterion (Hurvich and Tsai, 1989). Then,

six measures of distance or similarity are calculated for each protein pair, each of which reflects the likelihood of a physical interaction

between those two proteins based on their mass spectrometric profiles. These six features include the Pearson correlation coefficient

(calculated separately for both the raw and smoothed chromatograms), as well as its P value in the raw chromatograms; the Euclidean
Cell 184, 1–17.e1–e8, July 22, 2021 e4



ll

Please cite this article in press as: Skinnider et al., An atlas of protein-protein interactions across mouse tissues, Cell (2021), https://doi.org/
10.1016/j.cell.2021.06.003

Resource
distance between chromatograms; the number of fractions separating the maximum values of each co-fractionation profile; and the

distance between the closest pair of fitted Gaussians. Missing values in the feature matrix are imputed with the median, plus or minus

a small amount of random noise, sampled from a normal distribution with a mean of zero and a standard deviation equal to 5% of the

standard deviation of the relevant feature. A classifier is subsequently trained on a reference set of interactions in 10-fold cross-vali-

dation, taking pairs of proteins within the same complex as true positives and pairs of proteins in different complexes as true negatives,

and predictions are made for the entire test set (and all proteins not found in any training set complex) during each fold of cross-vali-

dation. Protein pairs are then ranked as candidate interactions based on theirmedian score across all ten cross-validation folds. PrInCE

implements a number of classifiers for use in network inference; here, we used heterogeneous classifier fusion (Riniker et al., 2013), as

implemented in the PrInCE Bioconductor package (Skinnider et al., 2021), to train an ensemble of classifiers, including naive Bayes,

random forest, logistic regression, and support vector machine models, then aggregated predictions by taking the mean rank across

all four classifiers. This strategy improves the robustness of the network inference procedure by down-weighting spurious protein pairs

that are highly ranked only by a single model while up-weighting pairs that are ranked near the top by all classifiers (Skinnider

et al., 2021).

The interaction score calculated for each protein pair is then converted to ameasure of precision (or, equivalently, a false discovery

rate) for each interaction by calculating the ratio of true positives to true positives and true negatives among interactions at that prob-

ability or higher. Finally, a list of interactions is output at a user-specified precision. We applied PrInCE to each of the two replicates in

each tissue separately, then combined and re-scored interactions detected in either replicate by the application of Fisher’smethod to

the false discovery rates of each interaction in either replicate. Only protein pairs co-eluting in at least five overlapping fractions were

considered as potential interactors. Interactions detected within each tissue at 95% precision or higher (equivalent to a 5% false dis-

covery rate) were retained for further analysis.

Like previous machine-learning approaches to network inference from co-fractionation mass spectrometry (Havugimana et al.,

2012; Wan et al., 2015), PrInCE requires a resource of known protein complexes to train the classifier, such as those provided by

the CORUMdatabase (Giurgiu et al., 2019) or themanually curated dataset of Ori et al. Previously, however, we observed that several

of these protein complexesmay be degraded or disassembled under PCP assay conditions (Stacey et al., 2018). We found that using

these protein complexes to train a classifier impairs the ability of that classifier to distinguish interacting and non-interacting protein

pairs, as the complexes in question may display little statistical evidence of co-elution. However, we found that the accuracy of

network inference could be substantially improved by using only a subset of CORUM protein complexes that had consistently co-

eluted in previously published PCP studies to train the classifier (Stacey et al., 2018), and we therefore used that same subset in

this study.

To evaluate the robustness of the inferred tissue interactomes to slight variations in the analysis workflow, we carried out a series of

additional PrInCE analyses, varying the parameters used in network inference. These parameters varied included: (i) the minimum

number of points required to retain (by default, PrInCE retains only chromatograms with at least five consecutive points, after

imputing single missing values with the average of their neighbors); (ii) the minimum number of fractions in which two proteins

were required to be jointly detected to be considered as potential interators; (iii) the maximum number of Gaussian peaks with which

each chromatogram was fit; (iv) the minimum r2 used to accept a fitted mixture of Gaussians; (v) the features used as input to the

model, where each one of the features described above was held out from the input feature matrix in turn; (vi) the number of

cross-validation folds performed; (vii) the total number of times the cross-validation procedurewas repeated; (viii) the number of trees

in the random forest classifier; and (ix) the classifiers used in the ensemble, where each of the three classifiers (naive Bayes, support

vector machine, and random forest) was held out from the ensemble in turn. For each alternative set of parameters, we retained a

matching number of interactions in each tissue, and calculated the proportion of interactions that were reproduced in that tissue after

varying the PrInCE parameters. We also evaluated the inherent stochasticity in the cross-validation procedure itself by running

PrInCE a second time with the default parameters and computing the overlap analogously, finding that between 98.3% and

99.2% of the interactions were reproduced in each tissue.

To evaluate the tissue specificity of the interactions, we analyzed the properties of the fitted Gaussians for each protein pair in tis-

sues where an interaction was or was not assigned by PrInCE. We first extracted the peak shift, defined as the distance (in fractions)

between the closest pair of fitted Gausians for each potential interaction, and compared this distance between tissues in which the

interaction was or was not detected by PrInCE. For proteins with a peak shift less than two fractions, we also calculated the stoichi-

ometry of the interaction, defined as the ratio between the heights of the two Gaussians. We used the smaller Gaussian peak as the

denominator to ensure all ratios were greater than or equal to 1. To assess the conservation of the interaction stoichiometry, we

computed the standard deviation of this ratio across tissues in which the interaction was or was not detected by PrInCE. We eval-

uated the statistical significance of these differences using the Brunner-Munzel test.

Comparison to published interactomes
Interaction data from the BioPlex (Huttlin et al., 2015), BioPlex 2 (Huttlin et al., 2017), HI–II–14 (Rolland et al., 2014), QUBIC (Hein et al.,

2015), and HuRI (Luck et al., 2020) screens were downloaded from the supporting information of the respective publications and

mapped to gene symbols. In addition, a master database of 82,602 experimentally detected mouse interactions was compiled by

merging interactions from nine databases, including BIND (Alfarano et al., 2005) BioGRID (Oughtred et al., 2019), CORUM (Giurgiu

et al., 2019), DIP (Salwinski et al., 2004), HINT (Das and Yu, 2012), IntAct (Orchard et al., 2014), iRefIndex (Razick et al., 2008), mentha
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(Calderone et al., 2013), and MINT (Licata et al., 2012). Each interaction was associated with one or more publication(s) in which the

interaction was reported; interactions without a traceable publication were assumed to be reported in a single publication. Identifiers

were mapped to gene symbols, and self-interactions were removed. The master database was then partitioned into interactions re-

ported in at least one, two, three, or four publications. Finally, manually curated protein complexes were obtained from Ori et al.

(2016). This yielded a total of 17 interactome networks.

Due to the relatively small number of known interactions in mouse, we also evaluated the overlap between our PCP-SILAM inter-

actomes and a larger resource of human interactions detected by small-scale experiments. Human interactions were obtained from

the BioGRID database (Oughtred et al., 2019) and studies reportingmore than 100 interactions were removed.We used this resource

to compute the proportion of interactions in (i) the PCP-SILAM interactomes and (ii) the five human high-throughput screens listed

above that had previously been detected by a small-scale study. We also obtained a set of human genetic interactions from BioGRID

and used these to perform a similar analysis.

Human and mouse GO annotations were obtained from the UniProt-GOA (Huntley et al., 2015). Annotations with the evidence co-

des ‘‘IPI’’ (inferred from physical interaction), ‘‘IEA’’ (inferred from electronic annotation), or ‘‘ND’’ (no data), or the qualifier ‘‘NOT,’’

were removed.

For each network, we computed a series of indices that reflect the concordance of the network with other large-scale genomic

datasets. First, we calculated the functional coherence of the network, using the EGADR package (Ballouz et al., 2017), as previously

described (Skinnider et al., 2018, 2019). In this analysis, each gene in the network is annotated with its known functions (that is, GO

terms), and a subset of these labels is then randomly withheld. A simple neighbor-voting algorithm (Schwikowski et al., 2000) is then

used to predict functions for the withheld proteins. That is, for each protein in the held-out set, a score is assigned for each GO term

that reflects the proportion of that protein’s interacting partners annotated with the GO term of interest. The process is repeated in

three-fold cross-validation, and the AUC is calculated for each GO term, thereby quantifying the accuracy of protein function pre-

dictions made based on the topology of the network alone. As an alternative measure of functional connectivity, we computed

the graph assortativity of each GO term (Huttlin et al., 2020), which quantifies the tendency of proteins annotated to a particular

GO term to interact with other proteins annotated to the same term, and observed similar results. In both cases, we discarded

GO terms annotated to less than 20 or more than 200 proteins, in order to mitigate the impact of very specific or very broad GO terms

on the results (Skinnider et al., 2018, 2019). Second, we computed the coexpression of each interacting protein pair, quantified using

the Pearson correlation coefficient, in two large-scale proteomics datasets (Kustatscher et al., 2019; Lapek et al., 2017). Third, for

each interacting protein pair, we computed the similarity of subcellular colocalization, again using the Pearson correlation coefficient

to quantify similarity in two alternative subcellular proteomics datasets (Geladaki et al., 2019; Orre et al., 2019). The distribution of

eachmetric within each network was visualized as a spectrum, using a random sample of 1,000 interacting protein pairs for the coex-

pression and co-localization spectra. Networks were arranged by the proportion of GO terms or proteins with less than random func-

tional coherence (that is, AUC < 0.5 or assortativity < 0), coexpression, or colocalization (correlation < 0).

Literature-curated interactions
The master database of unique mouse interactions described above was used to define known interactions and identify interactome

orphans as proteins in themouse tissue interactomes for which no interactions were previously deposited in any interaction database

(Kotlyar et al., 2015). The statistical significance of the overlap between the PCP-SILAM and literature-curated mouse interactomes

was calculated using the hypergeometric test, defining the population size to be the total potential number of interactions between all

unique proteins present in either the union of all PCP-SILAM tissue interactomes or the literature-curated dataset. Experimentally

determined binding affinities of known protein-protein interactions were determined from the PDBbind database (Liu et al., 2015),

after mapping human proteins to their mouse orthologs, and the binding affinities of interactions detected by PCP-SILAM were

compared to the background of all affinities in the database. Proteins of unknown function were defined as proteins without any

GO term annotation in the UniProt GOA database. To characterize functional differences in the PCP-SILAM and literature-curated

interactomes, we adapted the approach of van Leeuwen et al. (2016). For each GO term or pair of GO terms in the GO slim, we

computed the proportion of interactions between proteins annotated with the GO term(s) of interest in either the literature-curated

interactome or the union of PCP-SILAM interactomes. We then computed the total possible number of interactions in either network,

based on the total number of proteins annotated with the GO term(s) of interest in the network, and divided this by the total number of

possible protein pairs to obtain the background proportion. We then used these proportions to calculate the enrichment for each

network separately, and calculated the difference in enrichment between the literature-curated and PCP-SILAM interactomes as

an odds ratio. Statistical significance was assessed via a Z test, with Benjamini-Hochberg correction. Markov clustering was

performed on the union of the literature-curated and PCP-SILAM interactomes using the R package MCL, allowing self-loops and

otherwise with default parameters. Each cluster was subsequently categorized based onwhether the set of proteins therein was con-

nected by literature-curated interactions only, PCP-SILAM interactions only, or both. To produce Figure 3G, the number of publica-

tions for each gene was calculated using the NCBI file gene2pubmed. Proteins were then divided into 40 evenly sized bins based on

the number of publications in which they were mentioned, and the number of interactions between proteins in each pair of bins was

calculated, following the methodology of Rolland et al. (2014). Protein abundance in mouse NIH 3T3mouse fibroblasts was obtained

from Schwanhäusser et al. (2011) and used to organize the mouse interactome by protein abundance following an analogous

procedure.
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Predicted tissue interactomes
Predicted interactomes for six tissues, based on tissue-specific gene expression, were obtained from IID (Kotlyar et al., 2016); a pre-

dicted interactome was not available for thymus. Alternatively, predicted tissue interactomes were constructed in an analogous

manner using protein or phosphoprotein expression data from Geiger et al. (2013) and Huttlin et al. (2010), respectively. Predicted

tissue interactomes were constructed by subsetting the entire IID interactome to include interactions between proteins (phospho-

proteins) expressed in that tissue. Mouse tissue-specific gene coexpression networks were constructed for six tissues; an

insufficient number of samples were available for skeletal muscle. Curated microarray samples of healthy mouse tissues from the

Affymetrix GeneChip Mouse Genome 430 2.0 platform were identified using Bgee (Bastian et al., 2021) and downloaded from Ar-

rayExpress (Kolesnikov et al., 2015). Samples were processed using BrainArray Custom CDF (Dai et al., 2005) version 21.0.0 and

normalized using MAS5 (Hubbell et al., 2002). Probes called as present in fewer than 20% of samples for each tissue were removed.

ComBat (Leek et al., 2012) was used to adjust for batch effects, using each experiment as a batch, following best practices (Vanden-

bon et al., 2016). Finally, coexpression networks were constructed by taking the top 0.5% of connections, using the Pearson corre-

lation as the similarity measure.

To quantify the enrichment for experimentally detected interactions in tissue-specific coexpression networks and predicted tissue

interactomes, we compared the observed number of interactions overlapping between predicted and PCP-SILAM interactomes to

the number of overlapping interactions when tissue interactomes were randomly rewired 100 times using a degree-preserving algo-

rithm (Maslov and Sneppen, 2002). The number of iterations for the edge rewiring algorithmwas set to 6.9 times the number of edges

in each network (Ray et al., 2012). Analysis of network topology was performed using the R package igraph (Csardi and Nepusz,

2006). Hub proteins were defined as the top 10% most connected proteins in each network (Batada et al., 2006). The overlap be-

tween hub proteins across tissues in both PCP-SILAM and predicted interactomes was quantified using the Jaccard index. The ten-

dency for a protein to interact with different partners across tissues was quantified as the mean Jaccard index across all tissue pairs,

with a lower Jaccard index reflecting greater rewiring of protein interactions and a higher Jaccard index reflecting relatively stable

interactions across tissues. Enrichment or depletion for interactions at each level of specificity was calculated by calculating the ratio

of interactions observed at each tissue specificity relative to random expectation, using the same rewired interactomes as above. No

interactions were observed in five or more tissues within randomized networks.

Evolutionary analysis of tissue interactomes
The evolutionary conservation of interactions detected by PCP-SILAM was evaluated by comparing interactions at each level of tis-

sue-specificity (that is, interactions detected in one tissue, two tissues, three tissues, and so on) to (i) literature-curated interactions in

model organisms, and (ii) systematic screens for protein-protein interactions in humans. Evolutionary conservation of mouse

interactions in Saccharomyces cerevisiae,Caenorhabditis elegans, andDrosophila melanogasterwas calculated usingmodel organ-

ism-specific interactions from BioGRID (Oughtred et al., 2019). Mouse proteins were mapped to their one-to-one orthologs in each

organism, as well as human, using InParanoid (Sonnhammer and Östlund, 2015). Human protein-protein interaction screens were

obtained and preprocessed as described above. We also sought to evaluate the evolutionary novelty of tissue-specific interactions

using unbiased, genome-wide datasets. To this end, the difference in evolutionary rates between interacting protein pairs was calcu-

lated as in Fraser et al. (2002), and phylogenetic profiles were constructed using the InParanoid database, with the similarity in phylo-

genetic profile of a protein pair defined as the Pearson correlation in the presence or absence of each protein across all species (For-

telny et al., 2017). Estimates of protein evolutionary age were obtained from ProteinHistorian (Capra et al., 2012). To ensure that

significant correlations between tissue specificity and evolutionary conservation were not affected by higher false-positive rates

for interactions detected in fewer tissues, we performed two additional sets of analyses. First, we removed all the interactions

that were detected in only a single tissue and repeated all analyses using interactions found in anywhere from 2 to 7 tissues. Because

these interactions were independently detected at least twice, they are highly unlikely to be false positives. Second, we calculated

partial Kendall correlations, controlling for the precision at which each interaction was detected in each tissue. We found the results

remained statistically significant in all cases (Table S6).

To analyze cross-talk between tissue-specific and housekeeping proteins, we calculated the tissue specificity of each individual

protein as the number of tissues in which it was quantified in at least one PCP-SILAM fraction. We then calculated the statistical sig-

nificance of the over- or under-representation of interactions between housekeeping proteins and proteins detected in one to seven

tissues based on the randomly rewired interactomes described above, as shown schematically in Figure S5D, and using Bonferroni

correction to correct for multiple hypothesis testing. That is, we calculated the number of interactions in the liver interactome between

proteins detected exclusively in the liver and proteins found in all seven tissues, in both real and randomly rewired networks, and

expressed this as a Z score. We then repeated a similar calculation for proteins found in two to seven tissues in the liver interactome,

and then repeated this entire procedure for the six remaining tissues. To assess statistical significance across all seven tissues, Z

scores were aggregated using Stouffer’s method, weighting each Z score by the number of interactions detected in that tissue.

Interaction rewiring across tissues
Wedeveloped a quantitative index reflecting the degree of interaction rewiring for each protein across the sevenmouse tissues in our

study based on the Jaccard index of its interacting partners, as depicted schematically in Figure 6A. Briefly, for each of the 21 tissue

pairs in turn, we computed the Jaccard index for each protein present in both networks, defined as the number of interactions present
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in both tissues (the intersection) divided by the total number of interactions present in either tissue (the union). We then calculated the

mean Jaccard index for each protein over all tissue pairs.

We then asked whether we could leverage this index to identify biochemical determinants of interaction rewiring. To this end,

enrichment analysis of rewired proteins was performed using data from the following sources. Intrinsically disordered proteins

were identified using IUPred (Dosztányi et al., 2005), with proteins containing more than 30% disordered residues categorized as

intrinsically disordered (Gsponer et al., 2008). Proteins containing linear motifs were identified using ANCHOR (Mészáros et al.,

2009). Protein phosphorylation data was obtained from Huttlin et al. (2010), and the tissue specificity of each phosphorylation site

was quantified by calculating the Gini coefficient of the spectral counts in each tissue, a measure of inequality that has previously

been used to quantify the tissue specificity of gene expression (O’Hagan et al., 2018).We tested for differences in themedian Jaccard

index across these categories using the Brunner-Munzel test, a nonparametric test of stochastic equality, as implemented in the R

package ‘lawstat.’ The association between phosphorylation tissue specificity was tested using the Spearman rank correlation. Par-

tial Spearman correlations, controlling for intrinsic disorder, were calculated using the ‘ppcor’ R package.

We then investigated whether interaction rewiring resulted in the formation of tissue-specific interactions involved in cell-cell

signaling. We tested for associations between interaction tissue specificity and the presence of a protein kinase, transcription factor,

or cell surface receptor using the Kendall rank correlation. Transcription factors were obtained from the Mouse TF Atlas (Zhou et al.,

2017). Cell surface protein receptors were obtained from Ramilowski et al. (2015). Protein kinases were obtained from the UniProt

protein kinase index (https://www.uniprot.org/docs/pkinfam). Edge betweenness centrality, a topological metric that reflects infor-

mation flow through a network and is defined as the number of shortest paths between any two proteins that pass through a given

edge, was calculated in the aggregate PCP-SILAM interactome formed by the union of unique interactions across all seven tissues,

using the R package ‘igraph’ (Csardi and Nepusz, 2006).

We subsequently asked whether cellular strategies were in place to regulate the availability of rewired proteins. Protein and mRNA

abundance, half-lives, and translation and transcription rates were obtained from Schwanhäusser et al. (2011). We then computed

associations with the mean Jaccard index using the Spearman rank correlation, and again performed partial correlation analyses

using the ‘ppcor’ R package. To evaluate the impact of technical limitations in the detection or quantification of low-abundance pro-

teins on these findings, we performed two additional Jaccard index calculations. First, we reasoned that restricting our analysis to

proteins that were detected in all seven tissues would mitigate the impact of sporadic protein identification. Accordingly, we filtered

the tissue interactomes to include only interactions between these ‘housekeeping’ proteins, then repeated the Jaccard index calcu-

lation. Second, we divided the proteins identified in this study into three bins of lowly, moderately, and highly abundant proteins,

based on their summed total intensity across all fractions. We then removed proteins from the bottom two bins from the tissue in-

teractomes and repeated the Jaccard index calculation only for the top tercile of highly abundant proteins.

Last, we analyzed the relationship between interaction rewiring and disease. Mouse disease genes were obtained from theMouse

Genome Database (Smith et al., 2018). Tissue-specific disease genes, and their associated tissues, were obtained from Basha et al.

(2020), and network interconnectivity was calculated using the mean shortest path as previously described (Menche et al., 2015b),

restricting the analysis to disease-tissue pairs in which at least four disease genes were present in the corresponding tissue interac-

tome. The Brunner-Munzel test was used to evaluate the difference in network interconnectivity between disease-associated and

non-disease-associated tissues.
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Supplemental figures

Figure S1. Quantitative profiling of mouse tissue interactomes by PCP-SILAM, related to Figure 1

(A) Saturation curve of unique proteins identified with random addition of PCP fractions, using either SILAM light/heavy ratios or the light channel only. The total

number of protein groups quantified by SILAM is constrained by the requirement of quantification in both the unlabelled sample and the SILAM global reference.

The mean and standard deviation of 100 bootstraps are shown.

(legend continued on next page)
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(B) Coefficient of variation (CV) between biological replicates for individual protein quantifications, using either SILAM light/heavy ratios or the light channel only

for protein quantification.

(C) Rank correlation between biological replicates for entire protein chromatograms, using either SILAM light/heavy ratios or the light channel only for protein

quantification.

(D) Distribution of SILAM ratios across all tissues and replicates. Orange line and text show the number of proteins in the dataset with SILAM ratios greater

than 100.

(E) Coefficient of variation (CV) between biological replicates for individual protein quantifications, using either SILAM light/heavy ratios or the light channel only for

protein quantification, including only individual quantifications with SILAM ratios greater than 100.

(F) Rank correlation between biological replicates for entire protein chromatograms, using either SILAM light/heavy ratios or the light channel only for protein

quantification, including only chromatograms containing at least one SILAM ratio greater than 100.

(G) Reproducibility of PCP-SILAM protein quantification within individual tissues.

(H) Rank correlations between pairs of mismatched tissues acquired using either the same or different LC-MS/MS setups, or betweenmatching tissue pairs. n.s.,

p = 0.47, Wilcoxon rank-sum test; ***p < 0.0001, Wilcoxon rank-sum test.

(I) Cumulative distribution of protein intensity across tissues, shown as a fraction of measured total protein intensity within each tissue.

(J) Recovery of known protein complexes based on co-abundance in PCP-SILAM fractions or large-scale proteomic, transcriptomic, or translatomic datasets, for

each individual dataset shown in Figure 1G.

(K) Recovery of known protein complexes based on co-abundance in PCP-SILAM or coexpression in subsets of between 10 and 300 experiments from the

ProteomeHD resource.

(L) Recovery of known protein complexes in PCP-SILAM and published, cell-line-based PCP-SILAC datasets.
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Figure S2. Validation of mouse tissue interactomes, related to Figure 2

(A) Proportion of intra-complex interactions detected within the training set of known protein complexes amenable to analysis by PCP.

(B) Proportion of interactions recovered within each tissue interactome when varying the parameters used by PrInCE for network inference. Light gray bars

indicate the default parameters.

(C) Proportion of unique interactions detected in between one and seven tissues involving a protein with a SILAM ratio greater than 100 in at least one tissue.

(legend continued on next page)
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(D) Examples of well-characterized protein complexes with SILAM ratios greater than 100 in at least one tissue.

(E) Minimum precision at which interactions involving proteins with SILAM ratios greater than 100 were detected, compared to all other interactions.

(F) Assortativity of GO terms in interactome networks. Each vertical band represents a single GO term, shaded by its assortativity (that is, the tendency for proteins

annotated with that GO term to be connected to other proteins annotated to the same GO term) in each interactome. Vertical lines indicate the proportion of GO

terms with assortativity less than 0.

(G) Coexpression of interacting protein pairs in the ProteomeHD resource. Each vertical band represents one of 1,000 randomly selected interacting protein pairs,

shaded by the Spearman correlation between the log-fold change ratios of the two interacting proteins across 294 SILAC proteomics experiments. Vertical lines

indicate the proportion of negatively correlated interacting pairs.

(H) Co-localization of interacting protein pairs, as quantified by their correlation across cellular fractions in subcellular proteomics data (Orre et al., 2019). Each

vertical band represents one of 1,000 randomly selected interacting protein pairs, shaded by the Spearman correlation between the abundances of the two

interacting proteins across subcellular fractions. Vertical lines indicate the proportion of negatively correlated interacting pairs.

(I) Left, schematic depicting calculation of the peak shift. Right, peak shifts of interacting protein pairs in tissues where the interaction did or did not take place, as

inferred by PrInCE.

(J) Left, schematic depicting calculation of the interaction stoichiometry. Right, standard deviation of the interaction stoichiometry across tissues where the

interaction did or did not take place, as inferred by PrInCE.
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Figure S3. Expansion of the known mouse interactome by PCP-SILAM, related to Figure 3

(A) Proportion of interactions detected here by PCP-SILAM and in five recent high-throughput human screens that overlap with a literature-curated human

interaction. For PCP-SILAM, points show individual tissues and the bar shows the mean across tissues.

(B) As in (A), but showing the proportion of interactions that overlap with a human genetic interaction.

(C) Enrichment for overlap with literature-curated mouse interactions detected with different methods, relative to random expectation.

(D) Experimentally determined binding affinities of protein-protein interactions in the PDBbind database and the subset of PDBbind recovered by PCP-SILAM.

(E) Number of interactions between proteins binned bymean abundance (copies per cell) in mouse fibroblasts and ordered along both axes. Histogram shows the

median abundance in each bin.

(F) Proportion of previously known mouse interactions among PCP-SILAM interactions detected in one to seven tissues.
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Figure S4. Interactome rewiring limits accuracy of tissue interactome prediction, related to Figure 4

(A) Overlap between PCP-SILAM mouse tissue interactomes and tissue interactomes predicted by overlaying gene, protein, or phosphoprotein expression data

onto a static interactome map, relative to rewired networks.

(B) Proportion of hub proteins in one tissue (x axis) that are present in the interactome of the second tissue (y axis). Compare to Figure 4C.

(C) Most PCP-SILAM tissue interactome hubs are not hubs in the corresponding predicted tissue interactomes.

(D-E) Protein degrees across tissues in PCP-SILAM (D) and predicted (E) tissue interactomes.

(F) Rewiring of protein interaction partners across each pair of tissues, as quantified by the Jaccard index, in predicted and PCP-SILAM tissue interactomes.

(G) Tissue specificity of interactions across predicted and PCP-SILAM tissue interactomes.
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Figure S5. Evolution of interactions in mouse tissues, related to Figure 5

(A) Proportion of mouse interactions conserved in human, at each level of tissue specificity, in five recent high-throughput human interactome screens.

(B) Mean evolutionary age of interacting protein pairs at each level of tissue specificity.

(C) Mean Jaccard index across all pairs of tissue interactomes for mouse proteins binned by evolutionary age.

(D) Illustration of the randomized network null model. Within each tissue interactome, the observed number of interactions between housekeeping proteins (that

is, proteins quantified in all seven tissues) and proteins quantified in between one and seven tissues is tallied. The network is then rewired 1,000 times using a

degree-preserving method (Maslov and Sneppen, 2002), and the connectivity in randomly rewired networks is used to evaluate the statistical significance of the

connectivity patterns in the observed tissue interactomes.
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Figure S6. Tissue-specific interactions mediate tissue-specific biological information flow, related to Figure 6

(A) Phosphorylation sites on rewired proteins are more tissue-specific.

(B) Proportion of interactions involving protein kinases at each level of tissue specificity.

(C) Proportion of interactions involving transcription factors at each level of tissue specificity.

(D) Proportion of interactions involving cell surface receptors at each level of tissue specificity.

(E-G) mRNAs encoding rewired proteins are characterized by low abundance (E), short half-lives (F), and slow transcription rates (G).

(H) Statistical significance (Spearman rank correlation) of associations between the mean Jaccard index and protein and RNA abundances, half-lives, and

transcription/translation rates when including only highly expressed proteins or proteins quantified in all seven tissues (housekeeping proteins) in the calculation

of the Jaccard index. Dotted line shows p = 0.05.
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